Trip

Version 0.5

A Perl script for the processing of raw TRIP data

Waseem Akthar, Ludo Pagie, Johann de Jong, Jelle ten Hoeve

Netherlands Cancer Institute, Amsterdam

Introduction

A TRIP experiment produces three different types of sequencing reads: (a) the normalization
reads representing barcode counts in genomic DNA, (b) the expression reads representing
barcode counts in cDNA and (c) the mapping reads which represent the fragments containing the
barcode and the flanking genomic DNA sequence. While the normalization and expression reads
are generally single reads, the mapping reads can be either single or paired-end.

Since the barcode sequences are not known a priori, the first step in the TRIP data
analysis involves the identification of “genuine” barcodes by analyzing the normalization reads.
The abundance of these genuine barcodes in the normalization and expression data is
determined, resulting in a set of normalization counts and a set of expression counts (for each
genuine barcode). Finally, the pipeline identifies the genomic positions by aligning the mapping
reads using Bowtie2. Further analysis of mapping data identifies all the genomic locations
associated with each genuine barcode and the proportion of top two most frequently associated
locations. Ideally, a barcode should be present only at one genomic location, however; this is not
always the case because of re-hopping of the transposon after starting a TRIP pool, artifacts
during inverse PCR based mapping procedure and occasionally independent integrations of two
reporters with identical barcodes. When executed properly, the output of the analysis consists of
a data table with the sequence of all genuine barcodes, their counts in the normalization and
expression data, and the most frequent location associated with each barcode. It also gives the
total number of reads containing this barcode in the mapping data, the fraction of reads
pertaining to the most frequently associated location, the average Bowtie2 alignment quality
score of all those reads and, if applicable, also the fraction of reads pertaining to the second most
frequently associated locations. In addition to the data table, the program also produces a

summary table and some plots (in pdf format) showing summary of statistics.

Normalization reads

Mapping reads Expression reads
h 4
Extraction of barcodes
h 4 A 4
EXtrZCt'On of Pagﬁies Jv Extraction of barcodes
and genomic Filtering of mutant
barcodes
h 4 A 4
Alignment with the Genuine barcodes Getting counts of
reference genome and their counts genuine barcodes
A 4
A 4 table of counts and
All locations for) Filtering for the most mapping information
each barcode frequent locations) +

table of stats + plots

Figure 1: Flow diagram showing the data analysis pipeline for TRIP. The normalization reads are
used to define the genuine barcodes. The counts of these barcodes are then determined both in
normalization and expression reads. The mapping data is analyzed independently and all genomic
locations associated with each of the barcodes is determined. For each barcode, the most frequently
associated location, fraction of reads representing this location and related stats are determined. In
the end, a table of counts and mapping information, a table of stats and a few useful summary plots

are generated.

General structure of reads in TRIP data

Depending on the design of the construct used for TRIP, the reads can vary in their structure. The
script presented here can work on any of the three different formats described in Figure 2. The
sequence of the different constant segments and the length of the variable segments are given as

arguments in the configuration file.

Format A Format B
Normalization/expression Normalization/expression
Mapping forward Mapping forward
Mapping reverse Mapping reverse

Format C

Normalization/expression

Mapping forward ™= Index (sample tag) === Constant part

= barcode (reporter tag) === genomic DNA
Mapping reverse

Figure 2: Different formats of read structure in a TRIP experiment. In format A, the read (forward
read in case of mapping) starts with an index sequence used to identify different samples pooled on
one sequencing lane. In case no index is used or indexing is done in a different way, read structure
would be of format B. If the sequencing primer site is already cloned in the TRIP construct, then

there is no first constant part in the forward reads and they start directly from the barcode (format

C).

Getting Started with TRIP data analysis

Before getting started with the analysis of your data please make sure that you have a 32 or 64-

bit computer with 8 GB of RAM (16 GB preferred) and multiple CPU cores (we recommend > 8

CPU cores).

The following softwares are installed on your machine (see installation guide for more details).

* Linux operating system. Mac OS X (10.6 Snow Leopard or more recent) with Xcode and

Command Line Tools installed is also fine.

* The latest version of the R programming language (http://www.r-project.org)

* R packages ggplot2 (http://ggplot2.org) and gridExtra http://cran.r-
project.org/web/packages/gridExtra/index.html.

* Bowtie 2 software (http://bowtie-bio.sourceforge.net/bowtie2 /index.shtml)

* The Bowtie2 index of the genome (of organism of interest) is built. In case of human,

mouse or rat, you can download already built index from http://bowtie-

bio.sourceforge.net/bowtie2 /index.shtml.

* FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/)

* The Perl programming language (http://www.perl.org/get.html) version v5.12.4 or

later.

e The Perl module Text::LevenshteinXS

The command line options

Following are the options available on the command line with their description.

Option
--normFile
--expFile
--mapFor
--mapRev

--config

--out_dir

--map

--help

--verbose

--debug

Input
NORMALIZATION FILE
EXPRESSION_FILE
MAPPING_FORWARD
MAPPING_REVERSE
CONFIGURATION_FILE

OUTPUT_DIRECTORY

[nORb ORrORf]

Description
- file containing normalization reads. Should be fastq (unzipped) *
- file containing expression reads. Should be fastq (unzipped) *
- file containing forward mapping reads. Should be fastq (unzipped) §
- file containing reverse mapping reads. Should be fastq (unzipped) |
- file containing extra arguments (for an example see below) *
- path to the directory where output should be saved (this directory should
exist) *
- should mapping be done from both forward and reverse reads (b) or from
forward reads only (f) or from reverse reads only (r).
If 'f' only --mapFor needs to be specified otherwise (b or r) both --mapFor and
--mapRev needs to be specified.
The default value is undefined which means no mapping. In this case the
output will be only the barcodes and their counts in normalization and
expression data
- prints out usage information
- prints out running commentary during the execution of the script
- prints out the progress of the script into a file debug_file.txt in the output

directory

* These options must be given otherwise the script will not work.

§ This option must be given if --map is “f”, “r” or “b”.

9 This option must be given if --map is

nru’ or “b"-

The configuration file

In addition to the arguments given on command line, the TRIP data analysis script also requires

an additional set of arguments which can be conveniently provided in a text file. These

arguments contain information about the read structure, the information about the genome and

some additional arguments related to filtering of genuine barcodes and mapping.

Parameter

index_length

barcode_length

patl

pat2

hd

map_patl

map_pat2

map_pat_rev

cores

§ bowtie_base

max_dist_for

max_dist_rev

min_counts

Default Value

10

16

GTCACAAGGGCCGGCCACAACTC
GAG

TGATCCTGCAGTGTCACCTAAAT
CGTATGCGGCCGCGAATTCTTAC
TT

2

GTCACAAGGGCCGGCCACAACTC
GAG

TGATC

GTACGTCACAATATGATTATCTT
TCTAGGGTT

path/mm9/mm9

500

20

Description
the length of index sequence. If no index is part of the read
(format B according to Figure 2) then it is 0.
the length of the barcode. The program looks for barcodes which
are barcode_length + 1.
the first constant part in the normalization/expression read.
Only the four nucleotides (A, C, T or G) are allowed.For reads with
no first constant part (format C according to Figure 2), it should be
NA or na
the second constant part in the normalization/expression read.

Only the four nucleotides (A, C, T or G) are allowed.

The maximum edit distance to filter out potential mutants. *

the first constant part in the mapping read. Only the four
nucleotides (A, C, T or G) are allowed. For reads with no first
constant part (format C according to Figure 2), it should be NA or
na

the second constant part in the forward mapping read. Only the
four nucleotides (A, C, T or G) are allowed.

the constant part in the reverse mapping read. Only the four
nucleotides (A, C, T or G) are allowed.

the number of processors to be used for Bowtie2 alignments
(use less if you have fewer than 8 cores on your machine)

the Bowtie2 index of the genome to align the mapping reads
against

the maximum distance to cluster the positions on the forward
read. Typically it is kept a few hundred bases because during
inversePCR of TRIP, two different closely spaced restriction sites
can be independently used for mapping the same barcode.

the maximum distance to cluster the positions on the reverse
read. Typically it is kept a few bases just to combine those reads
for which the alignment was slightly shifted because of sequencing
errors.

the minimum number of reads for considering a barcode

genuine. We recommend that min_counts should be at least 5.

* An hd of 2 will mean that for a frequent barcode all other (less frequent) barcodes only 2

Hamming distance apart will be discarded from the list of genuine barcodes.

§ This means that the index files (six in total: mm9.1.bt2, mm9.2.bt2, mm9.3.bt2, mm9.4.bt2,

mm9.rev.1.bt2 and mm9.rev.2.bt2) for the mouse genome assembly 9 (in this case) are in the

directory path/mm9.

The best way to make a configuration file is to use the template configuration file
(config.txt) provided with this script and change the default values to appropriate ones. Note that
white space and text after the “#” does not interfere with the interpretation of the configuration
file. If you are using the constructs described in {Akhtar, 2013, 23953119} (GenBank accession
number KC710227) and the read length is > 65, then the only two parameters that need to be

changed are “cores” and “bowtie_base”.

The sample data files and the test run
The sample data files are provided with this script in the directory sample_data. These are four

sequencing files typically generated in a TRIP experiment. These files are

Filename ReadType
normalization_reads.fastq Normalization reads
expression_reads.fastq Expression reads
mapping_forward_reads.fastq Mapping reads (forward)
mapping_reverse_reads.fastq Mapping reads (reverse)

Copy these files to a directory (for example trip_dir). Also copy the configuration file the script
files trip.0.3.5.pl, trip_plot.R from the directory scripts and config.txt to trip_dir.
Type and execute the following command:

$ cd path/trip

Here path is the complete path to the directory trip_dir.

Create a sub-directory output within trip_dir

$ mkdir output

Now you are ready to execute the script. Type and execute the following command:

$ perl trip@.5.pl --normFile normalization_reads.fastq --expFile
expression_reads.fastq --mapFor mapping_forward_reads.fastq --mapRev
mapping_reverse_reads.fastq --config config.txt --out_dir output --map r --

verbose --debug

This command can also be given using the short-hand version of the arguments.
$ perl trip@.5.pl -n normalization_reads.fastq -e expression_reads.fastq -f
mapping_forward_reads.fastq -r mapping_reverse_reads.fastq -c config.txt -o

output -m r -v -d

On a machine with four CPU cores and 8 GB of RAM, this should take around half an hour. When
running for the first time, it is highly recommended to run it with --debug option. This will

generate a debug file debug file.txt in the directory /trip_dir/output.

After the complete execution of the script the directory /trip_dir/output should have following
set of files in it.

debug_file.txt

final_TRIP_data_table.txt

stats.txt

summary_results.pdf

You can compare the final TRIP_data_table.txt, stats.txt and summary_results.pdf with the files
provided with the script in the directory sample_output. In case the contents of these newly
generated files are matching with the contents of files provided with this script, then everything
is in order and you can pursue with the analysis of your own TRIP data. In case the outcome of
the script is different than the sample output files provided with this script in the directory

sample_output, you can report this to us together with the debug file.

Installation guide
BowtieZ
The alignment program bowtie2 should be installed on your machine and should be on the path.

For installing bowtie2 go to http://bowtie-bio.sourceforge.net/bowtie2 /index.shtml and

download the latest release of bowtie2 for your operating system.
Type and execute the following command:

$ export PATH="/path/bowtie2-2.1.0/bowtie2:$PATH”

Here path is the complete path to the directory bowtie2-2.1.0. In order to confirm that bowtie2 is
installed and is on your path, type and execute the following command:

$ bowtie2

This should display the help page of bowtie2. If that is not the case and instead you see a message
saying bowtie2: command not found, then edit your path file /etc/paths and manually add to
this file the full path to the directory bowtie2-2.1.0.

$ edit /etc/paths

R and the R package ‘ggplot2’

Download the latest version of R from http: //www.r-project.org and install it on your machine

according to the instructions given on the website.

Run R and type and execute the following at the R command prompt.

> install.packages("ggplot2")

You will be asked to choose a CRAN mirror. After the installation of ggplot2 is complete, type and

execute the following command:

> install.packages("gridExtra™)

Perl and the Perl module ‘Text::LevenshteinXS’
Generally Perl is installed on Mac OS X and Linux. You can confirm this by typing and executing

the following command:

$ perl -v

This should display the basic information about the Perl version installed on your machine.
In case Perl is not installed on your machine, download and install the latest version of Perl from

http://www.perl.org/get.html.

To install the Perl module Text::LevenshteinXS, type and execute the following command:

$ sudo cpan Text::LevenshteinXS

